Научная программа XII Международной научно-технической конференции «МЕТОДЫ, СРЕДСТВА И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ И ОБРАБОТКИ ИЗМЕРИТЕЛЬНОЙ ИНФОРМАЦИИ»

«Шляндинские чтения – 2020»

с элементами научной школы и конкурсом научно – исследовательских работ для студентов, аспирантов и молодых ученых (г. Пенза, 16 - 18 марта 2020 г.)

Дата 16.03.2020

Секция 1«Общие вопросы информационно-измерительной техники»

Краткое описание секции:

Системно рассматривается совокупность фундаментальных научно-технических проблем, решение которых нацелено на обеспечение современных требований к обеспечению единства, точности измерений, а также повышение их эффективности:

- 1) Фундаментальная проблема разработки новых принципов измерений физических величин, которые могут быть положены в основу построения первичных датчиков. Указанная проблема подразумевает междисциплинарные исследования на стыке физики, теории измерений.
- 2) Проблемы теории измерений:
 - проблема представления состоит в определении числовой системы (шкалы), в которую гомоморфно отображается исследуемая система. Задача представления заключается в доказательстве возможности представления эмпирической системы с помощью числовой системы, сохраняющей отношения между объектами, т.е. гомоморфной или изоморфной;
 - проблема единственности заключается в установлении возможных способов представления заданной эмпирической системы с различными числовыми системами и установлении связи между ними. Проблема единственности состоит в определении множества шкал, в которые может быть гомоморфно отображена исследуемая система. Это множество характеризуется видом преобразования, переводящего одну шкалу множества в другую.
- 3) Проблемы процесса измерений (в том числе, принципы, методы, подходы, динамика, структура) заключаются в фундаментальной проработке и совершенствовании:
 - возможности выделения информации об измеряемой величине среди других величин;
 - возможности материализации (воспроизведения или хранения) установленной единицы техническим средством;
 - возможности сохранения неизменным размера единицы (в пределах установленной точности) как минимум на срок, необходимый для измерений.
- 4) Проблемы разработки методов и средств современной информационноизмерительной техники для измерения и контроля различных неэлектрических (тепловых, механических, оптических и др.) и электрических (электрическое напряжение, электрическое сопротивление и др.) величин заключаются в необходимости решения следующих актуальных задач:
 - создание новых научных, технических и нормативно-технических решений, обеспечивающих повышение качества продукции, связанных с измерениями;
 - совершенствование научно-технических, технико-экономических и других видов метрологического обеспечения для повышения эффективности производства современных изделий, качество которых зависит от точности, диапазонности, воспроизводимости измерений перечисленных величин, а также их сохраняемости на заданном промежутке времени;
- разработка, совершенствование существующих методов и способов обеспечения единства измерений в области измерений;

- решение проблемы сокращения временных затрат на проведение единичного измерения;
- совершенствование научно-технических, технико-экономических, оперативных (временных) показателей метрологического обеспечения соответствующих систем и производств.

	T			T
Тип доклада	ФИО докладчика	Страна	Название доклада	Номер проекта
(устный,				РФФИ, по ре-
стендовый)				зультатам реали-
				зации которого
				подготовлен
	74.5	_	-	доклад
Пленарный	Пантелеев К.В.	Беларусь	Функциональные фото-	Докладчик –
доклад 1			приемники для систем	иностранный
			оптической диагностики	участник
			на основе полупроводни-	
			ков с глубокими примес-	
			ными уровнями	
Пленарный	Светлов А. В.,	РФ	Стенд для исследования	Докладчик –
доклад 2	Нгуен Нгок Мань	Вьетнам	резонансных электриче-	иностранный
			ских цепей	участник
Устный	Бигалиева Ж.С.	Казахстан	Исследование	Докладчик –
доклад 1			рекуперационной	иностранный
			системы в электрическом	участник
			транспорте	
Устный	Иванов В.Э.	РΦ	Малошумящий предвари-	Уточняется ин-
доклад 2			тельный усилитель с	формация о но-
			цифровым управлением	мере гранта
			для исследования низко-	
			частотных избыточных	
			шумов	
Устный	Зікірбай Қуаныш	Казахстан	Преимущество	Докладчик –
доклад 3			использование	иностранный
			технологий LoRaWAN в	участник
			системах учета комму-	
			нальных услуг	
Устный	Самоделкин Д.Г.	РФ	Применение обучающего	
доклад 4	самоделкин д.г.	ΙΨ	комплекта лабораторного	
доклад +			оборудования компании	
			ROHDE&SCHWARZ для	
			расширения области обу-	
			чения студентов	
Устный	Машков А.В.,	РΦ	Прикладная программа-	грант РФФИ №
доклад 5	Желонкин А.В.	1 4	имитатор быстродейст-	19-08-228-a
доклад 3	ACHOHKHII A.D.		вующих алгоритмов	17-00-220 - a
			спектрального анализа	
			частотно-временных ха-	
			рактеристик многокомпо-	
			нентных сигналов	
Устный	Гречишкина Н.В.	ЛНР	Работа индукционного	Докладчик –
доклад 6	T pe iniliknila 11.D.	Украина	преобразователя при кон-	иностранный
доклад 0		э краина	прообразователя при кон-	ппострапный

Тип доклада (устный, стендовый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
			троле магнетита в про- цессе его транспортиров- ки на конвейерной ленте	участник
Устный доклад 7	Иванов А.П., Трифонов Д.О., Серов С.А.	РФ	Исследование алгоритма обеспечения целостности сигналов на физическом уровне в многолучевом канале связи	
Стендовый доклад 1	М.А Сарыбай, А.С.Сарибаев, П.Г.Михайлов, И.С.Алтекова, А.Ж.Сарсенбаева	Казахстан Казахстан РФ Казахстан Казахстан	Способ определения параметров компенсации функционирование бортового компаса	Докладчик – иностранный участник
Стендовый доклад 2	Храмов А.С.	РФ	Конструкция тензорезистивного датчика давления	Грант РФФИ 18- 38-20045/18 (научный руководитель Бадеева Е.А.)

Дата 16.03.2020

Секция 2 «Фундаментальные проблемы метрологии и метрологического обеспечения средств измерений»

<u>Краткое описание секции.</u> На секции подлежат<u>о</u>бсуждению следующие актуальные фундаментальные задачи:

- развитие теории метрологической надежности средств измерений, основанной на прогнозировании и определении метрологической надежности средств измерений с использованием гибких многопараметрических вероятностно-физических моделей метрологических отказов; развитии теории динамической нелинейной регрессии и ее использования для решения задач определения времени наработки средств измерений на метрологический отказ;
- в связи с переопределением ряда единиц физических величин системы СИ предельную актуальность приобретает разработка теории проектирования средств измерений с воспроизведением единицы величины в соответствии с ее определением на основе физических констант;
- решение фундаментальных физико-метрологических проблем, связанных с необходимостью совершенствования принципов построения эталонов физических величин; проблем передачи и хранения единиц физических величин от эталонов;
- проблемы метрологической эффективности, которые связаны с созданием новых и совершенствованию существующих методов, методологий, средств измерений, измерительных систем. Теория метрологической эффективности обладает синтетической объяснительной, методологической, предсказательной и практической функциями;

- проблема метрологического обеспечения эксплуатации средств измерений, встроенных в технические системы, без их извлечения из функционирующей системы. Существенным продвижением в решении данной проблемы является теоретическое обоснование поверки средств измерений в рабочих условиях, существенно отличающихся от нормальных;
- проблема совершенствования концепции неопределенности результатов измерений и ее внедрения в отечественную метрологическую практику, что представляется обязательным условием участия РФ в глобальной экономике. Ощущается потребность в разработке нормативных документов, определяющих порядок формирования информационно-метрологического обеспечения проектирования и эксплуатации и методы нормирования и оценивания метрологических характеристик интеллектуальных информационно-измерительных и информационно-управляющих систем;
- совершенствование фундаментальных научных подходов к оценке неопределенности результатов измерений. Применение понятия погрешности результата измерения, которая принципиально неизвестна и конкретно неопределима, возможно только в теоретических рассуждениях о результатах измерений. Понятие оценки погрешности допускается использовать при калибровке средства измерений. В связи с этим возникает системная фундаментальная проблема разработки универсального метода для выражения и оценивания неопределенности результата измерения, применимого ко всем видам измерений и всем типам данных, используемых при измерениях.

	****	I a	**	**
Тип доклада	ФИО докладчика	Страна	Название доклада	Номер проекта
(устный,				РФФИ, по ре-
стендовый)				зультатам реали-
				зации которого
				подготовлен
				доклад
Пленарный	Ординарцева	РΦ	О пересмотре GUM: интер-	Докладчик –
доклад 3	Н.П.,		вальный метод оценивания	иностранный
	Ignacio Lira	Чили	неопределенности измере-	участник
	Canguilhem		ний	
Устный	Баранов В.А.,	РΦ	Метрологические аспекты	Грант РФФИ №
доклад 1	Волчихин В.И.		разработок в области искус-	15-07-01553/15
			ственного интеллекта	(научный руко-
				водитель В.И.
				Волчихин)
Устный	Нэй Мью Чжо,	Китай	Результаты исследований	Докладчик –
доклад 2	А.А. Лупачев,		интервального критерия ус-	иностранный
	Е.А. Еличева,	РΦ	тановившегося значения при	участник
	К.С. Куликова,		испытаниях сложных объек-	
	А.Р. Пецинярж		тов	
Устный	Мандыбура С.С.,	РΦ	Неопределенности в реали-	-
доклад 3	Толочко А.С.		зации топлива для авто-	
			транспортных средств	

Устный доклад 4	Н. А. Волкова, С. М. Геращенко В. С. Васильев	РФ	Алгоритм оценки артериального давления на основе спектрального анализа формы пульсовой волны	
Устный доклад 5	Печерская Е.А., Голубков П.Е.	РФ	Анализ методических погрешностей при синтезе МДО-покрытий с заданными свойствами	Грант РФФИ 19- 08-00425 (науч- ный руководи- тель Печерская E.A)
Устный доклад 6	Полякова Е.А., Бадеева Е.А.	РФ	Алгоритм расчета надежности волоконно-оптического датчика давления	Грант РФФИ 18- 38-20045/18 (научный руководитель Бадеева Е.А.)
Устный доклад 7	Башкатова Ю.В., Григоренко В.В.	РΦ	Неопределенности I и II типов в медицинской кибернетике	
Стендовый доклад 1	Таишев С.Р.	РФ	Исследования по созданию метрологической модели высокотемпературных датчиков быстропеременных давлений	Грант РФФИ 18- 38-20045/18 (научный руко- водитель Бадее- ва Е.А.)

Дата 17.03.2020

Секция 3 «Системы мониторинга и контроля технически сложных объектов» Краткое описание секции:

Запланировано обсуждение ряда актуальных фундаментальных проблем, способствующих созданию, развитию моделей технически сложных объектов; разработке принципов, методов, средств измерения и контроля физических величин, характеризующих контролируемые объекты:

- проблема создания моделей, адекватно отображающих объект мониторинга;
- проблемы установления и формализации взаимосвязей между параметрами технически сложных объектов;
- проблемы совершенствования первичных средств сбора и обработки информации, среди которых значительный удельный вес имеют первичные преобразователи (датчики) давления, перемещений, частоты вращения, акселерометры. Особо важную роль датчики физических величин играют в специальных отраслях науки и техники, таких как ракетно-космическая техника, вооружение и военная техника, атомная энергетика, авиационная техника. При этом к датчикам предъявляется широкий комплекс метрологических и эксплуатационных требований, зачастую противоречащих, а иногда и исключающих друг друга. Несмотря на высокий современный уровень развития науки и техники, проблемы измерений остаются актуальными из-за экстремальных условий эксплуатации датчиков для систем мониторинга и контроля технически сложных объектов, в том числе в ракетно-космической технике, энергетике;
- необходимость поддержания высокой надежности и безаварийности сложных образцов вооружения и военной техники вынуждает разработчиков увеличивать число контролируемых параметров и, как следствие, применять большое количество разнообразных датчиков физических величин в ТСО. Современная и перспективная ракетно-космическая техника

требует качественно иной цифровой, интеллектуальной информационно-измерительной техники, строящейся на новых физических принципах измерений, новых конструкционных, функциональных материалах с использованием критических приборостроительных технологий, новых электронных аналоговых и цифровых компонентов.

Тип докла- да (уст- ный, стен- довый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
Пленарный доклад 4	Зыбин Е.Ю., Косьянчук В.В., Карпенко С.С.	РΦ	Непараметрические методы функционального обнаружения и локализации отказов исполнительной подсистемы системы управления воздушного судна в условиях полной параметрической неопределенности при неполностью доступном измерению векторе состояний	Грант РФФИ № 20- 0801215 (Руководитель про- екта Зыбин Е. Ю.)
Устный доклад 1	Зыбин Е.Ю., Косьянчук В.В., Бондаренко Ю.В.	РФ	Непараметрические методы функционального обнаружения и локализации отказов измерительной подсистемы управления воздушного судна в условиях полной параметрической неопределенности при неполностью доступном измерению векторе состояний	Грант РФФИ № 20- 0801215 (Руководитель про- екта Зыбин Е. Ю.)
Устный доклад 2	Козлов В.В., Козлов А.Ю.	РФ	Методика определения временных параметров функционирования системы охранного видеонаблюдения на основе моделирования процесса многофазной обработки информации	Грант 17-01- 20164/17 (Руково- дитель проекта Щербаков М.А.)
Устный доклад 3	Мясникова Н.В., Лысова Н.В.	РΦ	Применение регуляторов с дробными степенями для регулирования параметров технологических процессов	Грант РФФИ 19-38- 90186/19 (Научный руководитель Мяс- никова Н.В.)
Устный доклад 4	Мясникова Н.В., Лысова Н.В.	РФ	Применение дробного ПИД-регулятора в системе производства бумажного полотна	Грант РФФИ 19-38- 90186/19 (Научный руководитель Мяс- никова Н.В.)

Тип докла- да (уст- ный, стен- довый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
Устный доклад 5	Кузнецов П.К., Батищев В.И., Мартемьянов Б.В.	РΦ	Диагностика состояния бортовой аппаратуры навигации и управления космического аппарата наблюдения	Уточняется информация о номере гранта
Устный доклад 6	Швец С.Н., Мирошников В.В.	ЛНР Украина	Феррозондовый измерительный канал для контроля сварных швов труб	Докладчик – ино- странный участник
Устный доклад 7	Мирошников В.В., Лавренченко А.В.	ЛНР Украина	Работа многоэлементного магнитомодуляционного преобразователя _	Докладчик – ино- странный участник
Устный доклад 8	Мирошников В.В., Петрущенко Т.В., Богданов В.Н.	ЛНР Украина	Компенсация внешнего магнитного поля магнито- упругого преобразователя	Докладчик – ино- странный участник
Устный доклад 9	Нгуен Куанг Тхы- онг, А.Д.Семенов	Вьтнам РФ	Подход интервального анализа к измерению и распознаванию состояния безопасности функционирования технических систем	Докладчик – ино- странный участник
Устный доклад 10	Боровских Л.П., Бобылев Д.А.	РФ	Помехоустойчивость методов прямого преобраования параметров объектов с многоэлементной схемой замещения	Узнать у авторов
Устный доклад 11	Кирсанов А.Е., Венчаков П.В.	РФ	Разработка программного обеспечения персонального и встраиваемого компьютера для работы с 3d-принтерами	Узнать у авторов
Устный доклад 12	Батищева О.М., Папшев В.А.	РΦ	Система мониторинга внешних воздействий при транспортировке опасных и высокотехнологичных грузов	Узнать у авторов
Стендовый доклад 1	Рыблова Е.А.	РФ	Чувствительные элементы полупроводниковых тен- зодатчиков на основе по- ликремния	
Стендовый доклад 2	И Борис Черсуевич, Коновалов Р.С., Коновалов С.И., Кузьменко А.Г., Нефедьев Д.И.,	РΦ	Определение характеристик акустических сигналов пьезопреобразователей для контроля твердых сред	Узнать у авторов

Тип докла- да (уст- ный, стен- довый)	ФИО докладчика Цаплев В.М.	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
Стендовый доклад 3	Кукушкин А.Н.	РΦ	Волоконно-оптический датчик больших угловых перемещений для стартовой площадки космодромов	Грант РФФИ 15-08- 02675(научный ру- ководитель Му- рашкина Т.И.)
Стендовый доклад 4	Кравцов А.Н.		Синтез оптимальной по достоверности программы контроля технического состояния сложных объектов	
Стендовый доклад 5	А.Д. Семенов, А.В. Волков, Н.И. Щипакина	РФ	Современное состояние проблемы моделирования систем управления технологическим производством	
Стендовый доклад 6	Якимов В.Н., Ибатов Р.Ш.	РФ	Оперативное измерение и определение массы светлых нефтепродуктов при выполнении операций слива и налива	Грант РФФИ 19-08- 00228 –а (научный руково- дитель Якимов В.Н.)
Стендовый доклад 7	Евсевьев В.В.	РФ	Рекомендации по измерению критериальных параметров ударноакустической волны в различных зонах ее трансформации	Уточняется информация о номере гранта
Стендовый доклад 8	Коноваленко А.А., Нефедьев А.И., Нефедьев Д.И.	РФ	Ионизационный датчик пламени для системы защиты котла	

Дата 17.03.2020

Секция 4 «Фундаментальные основы построения информационно-измерительных систем и комплексов»

Краткое описание секции:

Новые научно - технические задачи, связанные с автоматизацией измерительных процедур в различных предметных областях и отраслях, обуславливают необходимость проектирования качественно новых средств измерения, направленных на достижение следующих результатов:

- повышение точности измерений и расширение диапазонов измерений;
- увеличение номенклатуры измеряемых величин;
- увеличение производительности измерительных операций;
- возрастание числа выполняемых функций.

Информационно-измерительные системы и комплексы являются симбиозом аппаратных средств и алгоритмов обработки измерительной информации. Поэтому основной проблемой при проектировании информационно-измерительных систем (комплексов) является адекватное теоретическое обоснование систем и корректное применение алгоритмов и методик их функционирования.

Благодаря наличию в составе информационно-измерительных систем средств вычислительной техники, возможна дальнейшая обработка результатов измерений, полученных путем обработки первичном измерительной информации. Это позволяет комплексно решать с помощью информационно-измерительных систем широкий спектр смежных задач, не являющихся чисто измерительными, в частности, задачи контроля качества, распознавания образов и др.

Таким образом, одна из существенных фундаментальных проблем — совершенствование принципов и структур построения информационно-измерительных систем, расширение их функций посредством внедрения интеллектуальных подсистем, что позволит повысить эффективность контрольно-измерительных систем и комплексов посредством сокращения времени измерений и обработки данных, повышения качества результатов измерений и контроля, а следовательно, повышение их эффективности.

Тип доклада (устный, стендовый) Пленарный док-	ФИО докладчика Сарыбай М.	Страна Казах- стан	Название доклада Применение датчиков магнитометра для бортового компа-	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад Докладчик — иностранный
лад 5			са беспилотного летательного аппарата	участник
Пленар- ный док- лад 6	Папко А.А., Недопекин Н.В., Пауткин В.Е	РФ	Технологическая реализация уравнения Менделеева- Клайперона для создания новой концепции построения микроЭВМ	Уточняется информация о номере гранта
Устный доклад 1	Бойков И.В., Кривулин Н.П.		Методы построения информационно-измерительных систем по результатам идентификации динамических характеристик	Грант РФФИ 16- 01-00594 (науч- ный руководи- тель Бойков И.В.)
Устный доклад 2	Щербаков М.А.	РФ	Информационно- измерительный комплекс для управления испытаниями объ- ектов на случайную вибрацию	Грант 17-01- 20164/17 (Руко- водитель проек- та: Щербаков М.А.)
Устный доклад 3	В. Я. Горячев, Д. И. Нефедьев, Т. Ю. Бростило- ва, С. В. Кисляков, В. В. Козлов,	РΦ	Частотная характеристика функции преобразования информационно-измерительной системы линейных перемещений с фазовым датчиком	

Тип доклада (устный, стендовый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
	С.В. Голобоков			
Устный доклад 4	А.Н. Головяш- кин, А.С. Китаев, И.А. Попыгин	РΦ	Возможности применения мдп-фототранзисторов для многоэлементых (матричных) фотоприемников	Грант РФФИ 16- 32-50173 (Науч- ный руководи- тель Аверин И.А.)
Устный доклад 5	В. Я. Горячев Д. И. Нефедьев, С. А. Бростлов, О. К. Абдира- шев, А. А. Трофимов, Ю.А. Шатова	РФ Казах- стан	Влияние спектрального состава напряжения генератора на погрешность информационно-измерительной системы линейных перемещений с фазовым датчиком	-
Устный доклад 6	Е.А.Полякова, Бадеева Е.А.	РФ	Анализ требований к техническим характеристикам информационно-измерительных систем и средств измерений для ракетно-космической и авиационной техники по качеству и надежности для определения основных показателей надежности	Грант РФФИ 18- 38-20045/18 (на- учный руково- дитель Бадеева Е.А.)
Устный доклад 7	С. М. Геращен- ко, С. И. Геращенко, Л. А. Зюлькина, Е. В. Удальцова, В. В. Карнаухов, Е. Д. Костригина	РΦ	Джоульметрические информационно-измерительные системы для оценки состояния тканей пародонта	
Устный доклад 8	А.Н. Головяш- кин, И.А. Попыгин, А.С. Китаев	РΦ	Моделирование контактного сопротивления тонкопленочных датчиков	Грант РФФИ 19- 08-00924 (Науч- ный руководи- тель Аверин И.А.)
Устный доклад 9	В.В. Савицкий, А. А. Семенов, Д. И. Ишкуватов	РΦ	Автоматизация технического обслуживания аккумуляторных батарей	Уточняется информация о номере гранта
Устный доклад 10	В.С. Волков, М.С. Конкина	РΦ	Анализ конструктивных решений частотных преобразователей разбаланса мостовой схемы в частоту для полупроводниковых тензорезистивных датчиков	Уточняется информация о номере гранта

Тип док- лада (устный, стендо- вый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
Устный доклад 11	Кондрашев С.А., Щербаков М.А.	РΦ	Построение автоматизированных систем контроля и управления с использованием САПР Quartus II	Грант 17-01- 20164/17 (Руко- водитель проек- та: Щербаков М.А.)
Устный доклад 12	Крылов А.О., Дурманова В.Ф.	РФ	Информационно- измерительная системы кон- троля загазованности в уголь- ных шахтах	Уточняется информация о номере гранта
Стендо- вый док- лад 1	С. М. Геращен- ко, Н.Н. Янкина, Н.Н. Янкин, С.Л. Зефиров, Е.В. Кучумов	РΦ	Моделирование электрохимических процессов и джоульметрических измерительных систем	
Стендо- вый док- лад 2	Ашанин В. Н.	РФ	Определение параметров трехэлементных резонансных двухполюсников	
Стендо- вый док- лад 3	Петрунин А.Р., Дивненко А.А., Тертычная С.В.	РФ	Метод определения угловой скорости объекта при помощи оптического датчика	
Стендо- вый док- лад 4	Исаев А.В., Нефедьев А.И., Нефедьев Д.И.	РΦ	Математические модели для исследования статических характеристик асинхронного вентильного каскада с последовательным возбуждением	
Стендо- вый док- лад 5	М.А Сарыбай, С.У. Исмаилов, А.С. Сарибаев, Ж.Р.Уалиев, Ф.А.Сатыбалдие ва	Казах- стан	Применение датчиков магнитометра для бортового компаса беспилотного летательного аппарата	Докладчик – иностранный участник

Дата 18.03.2019

Секция 5 «Актуальные фундаментальные проблемы измерений и контроля параметров процессов нано- и микроэлектроники»

<u>Краткое описание секции:</u> Современное материаловедение, развивающееся в парадигме «от микроструктуры материала к его макросвойствам», а также развивающиеся в рамках отрасли наноиндустрии нано- и микроэлектроника ставят перед метрологией новые фундаментальные задачи по разработке методов и средств определения количественных параметров моделей материалов непосредственно в процесса его синтеза. К критическим фундаментальным

проблемам измерений и контроля параметров процессов нано- и микроэлектроники относятся следующие:

- 1) развитие технологий управляемого синтеза материалов, что тесно связано с разработкой и совершенствованием методов и средств неразрушающего контроля и измерения параметров материалов нано- и микроэлектроники непосредственно во время технологических процессов. Проблема заключается в необходимости учета всех физических эффектов, приводящих к изменению факторов, влияющих на параметры синтезируемых покрытий, что указывает на актуальность разработки адекватных моделей взаимосвязи параметров материалов нано- и микроэлектроники; разработки методоуправляемого учитывающих указанные логии синтеза, модели. Например, в данной секции подлежат рассмотрению доклады, посвященные созданию фундаментальных основ взаимосвязей параметров оксидных покрытий, формируемых в МДО-процессе; фундаментальных основ взаимосвязей параметров тонких пленок прозрачных проводящих покрытий, формируемых методом спрей-пиролиза и др. методами; синтез алмазных пленок, поликристаллических структу и т.д.;
- 2) формализация, установление количественных показателей конструктивной прочности материалов в процессе их синтеза и эксплуатации изделий на их основе;
- 3) разработка и совершенствование принципов, методов и средств измерения и контроля параметров, характеризующих размерные эффекты в материалах микро- и наноэлектроники;
- 4) исследование, совершенствование методов и средств измерения параметров качества поверхностей, модифицированных высокоэнергетическими воздействиями, и параметров технологических процессов их формирования.

Определенный опыт решения совокупности перечисленных проблем, накопленный в результате работы XI МНТК «Методы, средства и технологии получения и обработки измерительной информации» («Шляндинские чтения — 2019») указывает на целесообразность развития междисциплинарного направления нанометрологии с привлечением ученых в области теоретической физики, электроники, метрологии, измерительной техники.

Тип док-	ФИО	Страна	Название доклада	Номер проекта
лада (уст-	докладчика			РФФИ, по ре-
ный, стен-				зультатам реали-
довый)				зации которого
				подготовлен
				доклад
Пленар-	Пантелеев К.В.	Респуб-	Цифровой измеритель кон-	Докладчик –
ный док-		лика Бе-	тактной разности потенциалов	иностранный
лад 7		ларусь	для сканирующей зондовой	участник
			электрометрии	
Устный	Зинченко Т.О.,	РΦ	Метод спрей-пиролиза для	
доклад 1	Печерская Е.А.,		синтеза прозрачных проводя-	Докладчик –
	Кондрашин В.И.,		щих оксидов	иностранный
	Булкин П.В.	Франция		участник
Устный	Д.И. Нефедьев,	РΦ	Основные положения проек-	
доклад 2	А.И. Диянов		тирования датчиков на основе	
			внутриволоконных Брэггов-	
			ских решеток	

Тип док- лада (уст- ный, стен- довый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
Устный доклад 3	Спицына К.Ю.	РФ	Контроль травления поликристаллических структур методом оптической эмиссионной спектроскопии	Грант РФФИ 16- 32-50173 (Науч- ный руководи- тель Аверин И.А.)
Устный доклад 4	Бактыбаев М.К., Базарбай Л	Казах- стан	Нелинейная фотолюминесцентная визуализация, приминяемая для фемтосекундного лазерного изготовления волоконных Брэгговских решеток	Докладчик – иностранный участник
Устный доклад 5	Крупкин Е.И.	РФ	Исследование влияния времени перемешивания золя на структуру и фотокаталитические свойства плёнок оксида цинка	Грант РФФИ 19- 08-00924 (науч- ный руководи- тель И.А. Аве- рин)
Устный доклад 6	Голубков П.Е.	Рф	Систематизация методов из- мерений МДО-покрытий	Грант РФФИ 19- 08-00425 (науч- ный руководи- тель Печерская Е.А)
Устный доклад 7	Сигаев А.П.	РФ	Исследование концентрации адсорбционных центров на поверхности наноструктур на основе смешанных оксидов индикаторным методом РЦА	Грант РФФИ 19- 08-00924 (науч- ный руководи- тель И.А. Аве- рин)
Устный доклад 8	Мельников О.А., Сафронов М.И.	РФ	Применение микродугового оксидирования для повышения микротвердости изделий из легких металлов	Грант РФФИ 19- 08-00425 (науч- ный руководи- тель Печерская Е.А)
Устный доклад 9	Уткин К.Э., Колосов П.А.	РФ	Способы стабилизации тонко- пленочных резисторов: недос- татки и преимущества	Уточняется информация о номере гранта

Дата 18.03.2020

Секция 6 «Фундаментальные основы методов и средств обработки измерительной информации, виртуальные измерительные приборы и системы»

<u>Краткое описание секции:</u> Секция посвящена фундаментальным проблемам повышения адекватности моделей при создании виртуальных измерительных приборов и систем, проблемам совершенствования научных, технических и нормативно-технических основ, необходи-

мых для обеспечения современных требований к единству и точности измерений, , в том числе:

- 1) проблемы обработки измерительной информации при исследовании сложных систем: парадигма детерминизма, согласно которой всегда можно вычислить прошлое, настоящее и будущее динамической системы по её уравнениям движения; стохастическая парадигма, согласно которой всегда можно для каждой выборки параметров состояния динамической системы построить статистическую функцию распределения, которая будет описывать реальное состояние динамической системы;
- 2) формирование комплексного подхода к обработке измерительной информации, сочеследующее: тающего - системный подход, который рассматривает предметы и явления в развитии, которое илет ПО единому алгоритму путем самоорганизации; - структурный подход, который изучает внутреннее строение системы, характер и специфику связей между ee элементами: - функциональный подход, который изучает функциональные зависимости элементов системы, также входные выходные параметры; - алгоритмический подход, который описывает информационные процессы, функционирование систем управления и представляет изучаемое явление в виде процесса, происходящего ПО строгим - информационный подход, который исследует информационный аспект различных явлений действительности - объем потока информации, способы ее кодирования и алгоритмы переработки;
- вероятностный подход, основанный на статистической обработке информационных процессов;

 3) фундаментальные теоретические и экспериментальные основы построения методов и
- 3) фундаментальные теоретические и экспериментальные основы построения методов и средств современной информационно-измерительной техники для измерения и контроля различных неэлектрических (тепловых, механических, оптических и др.) и электрических (электрическое напряжение, электрическое сопротивление и др.) величин, которые направлены на: создание новых научных, технических и нормативно-технических решений, обеспечивающих повышение качества продукции, связанных с обработкой измерительной информации;
- **4)** совершенствование научно-технического и технико-экономического обеспечения для повышения эффективности производства современных изделий, качество которых зависит от обработки измерительной информации;
- 5) основы разработки и совершенствование «облачной» обработки измерительной информации технологии обработки данных, в которой программное обеспечение предоставляется пользователю как Интернет-сервис, что является одним из новых направлений обработки информационно-измерительной информации при формировании распределенных телекоммуникационных измерительных систем и комплексов;
- 6) проблемы моделирования и преобразования электрических сигналов в приборах медицинского назначения (в кардиологии: передача и преобразование кардиосигналов, проблемы создания кардиостимуляторов; в психиатрии: разработка новых и усовершенствованию существующих способов и средств адаптивной предварительной обработки медицинских сигналов и определения сигнальных биомаркеров исследуемых сигналов разной природы (электрокардиографических, энцефалографических и речевых сигналов) для повышения эффективности и оперативности диагностики состояния здоровья).

Тип док-	ФИО	Страна	Название доклада	Номер проекта
лада (пле-	докладчика	1		РФФИ, по ре-
нарный,				зультатам реали-
устный,				зации которого
стендо-				подготовлен
вый)		3.7		доклад
Пленар-	Л. А. Тягуль-	Молдо-	Разработка программного про-	Докладчик –
ный док-	ская,	ва	дукта для автоматизации сбо-	иностранный
лад 8	И.А. Дубинин		ра, учета и хранения данных на металлургическом заводе с ис-	участник
			пользованием компьютерного	
			зрения	
Устный	Алимурадов	РΦ	Применение улучшенной пол-	Грант РФФИ 18-
доклад 1	A.K.		ной множественной декомпо-	37-00256 (науч-
	ТычковА.Ю.,		зиции на эмпирические моды с	ный руководи-
	Чураков П.П.		адаптивным шумом в задачах	тель: Алимура-
***	0 , 20	D.#	обработки речевых сигналов	дов А.К.)
Устный	Самойлов В.С.,	РΦ	Блочная синхронизация циф-	Докладчик –
доклад 2	Аль Тахар Инас Ануар,	Ирок	ровых информационных потоков с помехоустойчивым ко-	иностранный участник
	Насир Самах	Ирак	дированием	участник
	Аббас Хассан	Ирак	дированием	
	7100ac 71accan	Прик		
Устный	Самойлов В.С.,	РΦ	Оценка плотности потока	Докладчик –
доклад 3	Аль Тахар Инас		энергии от мобильных телефо-	иностранный
	Ануар,	Ирак	нов	участник
	Насир Самах			
	Аббас Хассан	Ирак		
Устный	Алимурадов	РΦ	Краткий обзор существующих	Грант РФФИ
доклад 4	A.K. ,		баз данных эмоциональной ре-	18-37-00256 (на-
	Журкина А.Е.,		чи: современное состояние,	учный руково-
	Фокина Е.А.		проблемы и перспективы раз-	дитель: Алиму-
***	1.6	D.4	вития	радов А.К.)
Устный	Мясникова Н.В.,	РΦ	Выделение близких частотных	Грант РФФИ №
доклад 5	Мясникова М.Г.,		составляющих на основе па-	14-08-01065
	Боряк С.		раметрических методов в	
			ультразвуковых системах навигации	
Устный	Конкина Е.О.	РФ	Гранулометрический анализ	Грант 17-01-
доклад 6			неоднородности просвета бу-	20164/17 (Руко-
			мажного полотна	водитель проек-
				та: Щербаков
				M.A.)
Устный	А.В. Рудин,	Россия	Диагностика моторных масел	
доклад 7	В.Д. Кревчик,		методом ультразвукового ин-	
	М.Б. Семенов, Д.А. Апакин		терферометра	
Устный	Батищев В.И.,	РΦ	Коррелограммная оценка спек-	грант РФФИ №
доклад 8	Якимов В.Н.	1 4	тра на основе бинарно-	19-08-228-а
дошид	January D.II.		интервального цифрового ко-	2, 00 220 u
<u> </u>	L	l	терения дифрового ко	

Тип док- лада (пле- нарный, устный, стендо- вый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по результатам реализации которого подготовлен доклад
			дирования измерительного сигнала	
Устный доклад 9	Богачев И.В., Левенец А.В., Нефедьев Д.И.	РΦ	Классификация данных на основе нейросетевых технологий в подсистемах сжатия информационно-измерительных систем	
Устный доклад 10	Сейфуллин Р.Т., Бочкарев А.В.	РФ	Обработка сигналов аналитических приборов в базисе функций Чебышева-Эрмита	Уточняется информация о номере гранта
Стендовый доклад 1	Ярославкина Е.Е., Ланге П.К., Муратова В.В.	РΦ	Методы оперативного определения амплитуд нечетных гармоник напряжений и токов	Грант № 18-08- 00253-а
Стендовый доклад 2	Иосифов В.П.	РΦ	Применение методов параметрического спектрального анализа в интеллектуальных средствах измерений	Уточняется информация о номере гранта
Стендовый доклад 3	В.В. Регеда, О.Н. Регеда,	РΦ	Визуализация результатов расчета переходного процесса в сложной электрических цепей средствами системы МАТНСАD	
Стендовый доклад 4	Шепелева А. Э., Васина А.В.	РФ	Методы измерения коэффици- ента вязкости	

Дата 18.03.2020

Секция 7 «Интеллектуальные информационные системы»

Краткое описание секции:

Данная секция выделена впервые в 2020 г. в рамках МНТК «Методы, средства и технологии получения и обработки измерительной информации» по итогам круглого стола в рамках конференции, проведенной в 2019 г. Основные фундаментальные проблемы в области искусственного интеллекта:

- адекватное отображение предметной области посредством совокупности моделей, учитывающих все необходимые взаимосвязи для построения совершенных структур нейронных сетей;
- проблема построения репрезентативного, релевантного и корректно размеченного набора данных, характеризующего предметную область;
- разработка универсального подхода по созданию сильного искусственного интеллекта, способного в автоматическом режиме строить модели исследуемых объектов, анализировать их, принимать адекватные решения;

- проблема автономного самообучения и развития адаптивности алгоритмов и методик к новым задачам;
- разработка новых принципов работы и конструкций интеллектуальных датчиков, которые в силу особенностей своей структуры и расширенных функциональных возможностей позволяют обеспечить либо выполнение соответствующих функций, повышающих информативность выходного сигнала до необходимого уровня, либо формирование потока данных с необходимой достоверностью на основе анализа большого количества результатов отдельных, относительно недостоверных измерений. В результате реальные метрологические характеристики интеллектуальных измерительных преобразователей потенциально могут быть существенно выше характеристик датчиков в традиционном исполнении. В частности, это связано с тем, что интеллектуальный датчик представляет собой совокупность аппаратных и программных средств, обеспечивающих отображение свойств объекта в виде некоторой структуры данных, формируемых в результате обработки выходного сигнала первичного чувствительного элемента по определенному алгоритму.

На секции конференции будут рассмотрены фундаментальные проблемы создания и развития искусственного интеллекта, как обязательного элемента робототехники, современных технологий нано- и микроэлектроники, медицинской техники, авиационно-космической техники, беспилотного транспорта.

По завершении работы секций конференций запланировано проведение круглого стола с целью систематизации результатов работы конференции, выработки и принятия решений конференции, выявления необходимости развития новых фундаментальных научных направлений по тематике конференции.

Тип докла- да (устный, стендовый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по ре- зультатам реали-
				зации которого подготовлен доклад
Пленарный доклад 9	Деев М.В., Финогеев А.Г., Финогеев А.А.	РΦ	Архитектура системы интеллектуального поиска и анализа требований работодателей	Грант РФФИ № 19-013-00409 (Научный руководитель Деев М.В.)
Устный доклад 1	Усиков В.Д.	РФ	Способ построения интеллектуальной информационной системы контроля метрологической надежности средств измерений	
Устный доклад 2	Алимбаева Ж. Н.	Казах- стан	Разработка метода интеллектуальной обработки электрокардиосигнала для предварительной диагностики инфаркта миокарда.	Докладчик – иностранный участник

Тип докла- да (устный, стендовый)	ФИО докладчика	Страна	Название доклада	Номер проекта РФФИ, по ре- зультатам реали- зации которого подготовлен доклад
	И.Н.			M.B.)
Устный доклад 4	Верещагина С.С.	РФ	Разработка алгоритма предва- рительной обработки измери- тельной и экспертной инфор- мации	
Устный доклад 5	Мельников Е.В., Пшенни- ков Д.О.	РФ	Интеллектуализация ручного электроинструмента для ис- пользования на промышлен- ных предприятиях	

По окончании работы секций конференции 18.03.2020 состоится подведение итогов конкурса научно-исследовательских работ для студентов, аспирантов и молодых ученых, награждение победителей.

Конференция завершится итоговым заседанием в формате круглого стола с принятием решений о развитии перспективных фундаментальных научных направлений, в том числе, о формировании новых научных направлений в области методов, средств и технологий получения и обработки измерительной информации

Председатель программного комитета, Президент ФГБОУ ВО «Пензенский государственный университет», доктор технических наук, профессор, Заслуженный деятель науки РФ

Волчихин В.И.